A comprehensive study on the adsorption-photocatalytic processes using CoFe2O4/SiO2/MnO2 magnetic nanocomposite as a novel photo-catalyst for removal of Cr (VI) under simulated sunlight: Isotherm, kinetic and thermodynamic studies

J Environ Health Sci Eng. 2022 Jan 25;20(1):147-165. doi: 10.1007/s40201-021-00763-1. eCollection 2022 Jun.

ABSTRACT

PURPOSE: The present study aimed to investigate the efficiency of CoFe2O4/SiO2/flower-like MnO2 nanoparticles as a catalyst for Cr (VI) adsorption-photocatalytic processes.

METHODS: The magnetic nanocomposite used was first synthesized and then characterized using TEM, SEM, EDX, XRD, FTIR, XRF and BET advanced techniques. The removal of the Cr (VI) was performed through a batch adsorption approach and the effects of sample pH (A; 2-6), initial chromate concentration (B; 50-100 ppm) and adsorbent weight to sample volume ratio (C; 1-3 mg ml-1), hole scavenger (0.1 -0.3%w/v) and time (E; 30-60 min), to evaluate the individual and interactive effects under ultraviolet light conditions, were also studied by the central composite design in the photocatalytic process of adsorption.

RESULTS: The adsorption-photocatalytic performance of the CoFe2O4/SiO2/MnO2 composite was high in which 98.1% of Cr(VI) after 30 min of photocatalytic treatment in optimum conditions (i.e. pH = 3, catalyst concentration = 2 mg L-1, Cr(VI) concentration = 200 mg L-1, and hole scavenger concentration = 0.4% (w/ v), At laboratory temperature, speed = 400 rpm, under UV radiation).Under optimum conditions, Cr(VI) reductive followed pseudo-second-order kinetics and followed the Langmuir and Temkin isotherms, also, positive value of ΔH° indicates endothermic nature.

CONCLUSIONS: The results showed that the synthesized CoFe2O4/SiO2/MnO2 magnetic nanocomposite holds a great potential for use as a photocatalyst to remove Cr (VI) in adsorption reactions. It can be used as an effective catalyst in the eradication of Cr (VI) wastewater.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00763-1.

PMID:35669821 | PMC:PMC9163262 | DOI:10.1007/s40201-021-00763-1

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *