An observability and detectability analysis for non-linear uncertain CSTR model of biochemical processes

Sci Rep. 2022 Dec 25;12(1):22327. doi: 10.1038/s41598-022-26656-3.

ABSTRACT

The problem of proving observability/detectability properties for selected non-linear uncertain model of biochemical processes has been addressed in this paper. In particular, the analysis of observability/detectability in the face of parametric and unstructured uncertainty in system dynamics transformed into unknown inputs, and unknown initial conditions has been performed. Various sets of system measured outputs were taken into account during the research. The considered biochemical processes were modelled as a continuous stirred tank reactor with the microbial growth reaction and microbial mortality with the aggregated substrate and biomass concentrations in aerobic phase. Classical tools based on differential geometry and the method of indistinguishable state trajectories (indistinguishable dynamics) were used to verify the properties of the system. The observability/detectability analysis was performed for nine cases covering a wide range of possible combinations of system measured outputs and unknown inputs. The obtained results of are crucial meaning for system state reconstruction (estimation), which involves the synthesis of state observers.

PMID:36567326 | PMC:PMC9790892 | DOI:10.1038/s41598-022-26656-3

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy