Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering

Sci Rep. 2023 Sep 1;13(1):14384. doi: 10.1038/s41598-023-41247-6.


Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.

PMID:37658092 | DOI:10.1038/s41598-023-41247-6


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *