BCI-Walls: A robust methodology to predict if conscious EEG changes can be detected in the presence of artefacts

PLoS One. 2023 Aug 24;18(8):e0290446. doi: 10.1371/journal.pone.0290446. eCollection 2023.


Brain computer interfaces (BCI) depend on reliable realtime detection of conscious EEG changes for example to control a video game. However, scalp recordings are contaminated with non-stationary noise, such as facial muscle activity and eye movements. This interferes with the detection process making it potentially unreliable or even impossible. We have developed a new methodology which provides a hard and measurable criterion if conscious EEG changes can be detected in the presence of non-stationary noise by requiring the signal-to-noise ratio of a scalp recording to be greater than the SNR-wall which in turn is based on the highest and lowest noise variances of the recording. As an instructional example, we have recorded signals from the central electrode Cz during eight different activities causing non-stationary noise such as playing a video game or reading out loud. The results show that facial muscle activity and eye-movements have a strong impact on the detectability of EEG and that minimising both eye-movement artefacts and muscle noise is essential to be able to detect conscious EEG changes.

PMID:37616245 | PMC:PMC10449140 | DOI:10.1371/journal.pone.0290446


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *