Chromium (VI)-Induced Alterations in Physio-Chemical Parameters, Yield, and Yield Characteristics in Two Cultivars of Mungbean (Vigna radiata L.)

Front Plant Sci. 2021 Sep 29;12:735129. doi: 10.3389/fpls.2021.735129. eCollection 2021.

ABSTRACT

Chromium (Cr) presently used in various major industries and its residues possess a potent environmental threat. Contamination of soil and water resources due to Cr ions and its toxicity has adversely affected plant growth and crop productivity. Here, deleterious effects of different levels of Cr (VI) treatments i.e., 0, 30, 60, 90, and 120 μM on two mungbean cultivars, Pusa Vishal (PV) and Pusa Ratna (PR), in hydroponic and pot conditions were evaluated. Germination, seedling growth, biomass production, antioxidant enzyme, electrolytic leakage, oxidative stress (hydrogen peroxide and malondialdehyde), and proline content were determined to evaluate the performance of both cultivars under hydroponic conditions for 15 days. The hydroponic results were further compared with the growth and seed yield attributes of both the genotypes in pot experiments performed over 2 years. Seedling growth, biomass production, total chlorophyll (Chl), Chl-a, Chl-b, nitrogen content, plant height, seed protein, and seed yield decreased significantly under the 120 μM Cr stress level. Activities of antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase and peroxidase increased in the leaves following Cr exposure at 60-90 μM but declined at 120 μM. Cr-induced reductions in growth and seed yield attributes were more in the sensitive than in the tolerant cultivar. Cr accumulation in the roots, stems, leaves, and seeds increased with an increase in Cr concentrations in the pot conditions. Furthermore, for both cultivars, there were significant negative correlations in morpho-physiological characteristics under high Cr concentrations. Overall results suggest that (PR) is more sensitive to Cr stress (PV) at the seedling stage and in pot conditions. Furthermore, (PV) can be utilized to study the mechanisms of Cr tolerance and in breeding programs to develop Cr-resistant varieties.

PMID:34659304 | PMC:PMC8516152 | DOI:10.3389/fpls.2021.735129

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *