Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery

Nanomaterials (Basel). 2023 Feb 25;13(5):865. doi: 10.3390/nano13050865.


Lithium-sulfur batteries with high theoretical energy density and cheap cost can meet people’s need for efficient energy storage, and have become a focus of the research on lithium-ion batteries. However, owing to their poor conductivity and “shuttle effect”, lithium-sulfur batteries are difficult to commercialize. In order to solve this problem, herein a polyhedral hollow structure of cobalt selenide (CoSe2) was synthesized by a simple one-step carbonization and selenization method using metal-organic bone MOFs (ZIF-67) as template and precursor. CoSe2 is coated with conductive polymer polypyrrole (PPy) to settle the matter of poor electroconductibility of the composite and limit the outflow of polysulfide compounds. The prepared CoSe2@PPy-S composite cathode shows reversible capacities of 341 mAh g-1 at 3 C, and good cycle stability with a small capacity attenuation rate of 0.072% per cycle. The structure of CoSe2 can have certain adsorption and conversion effects on polysulfide compounds, increase the conductivity after coating PPy, and further enhance the electrochemical property of lithium-sulfur cathode material.

PMID:36903744 | PMC:PMC10005037 | DOI:10.3390/nano13050865


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy