Coproduction and enhancement of electricity and biobutanol using adsorption carrier solid-state fermentation

Biotechnol Biofuels Bioprod. 2022 May 2;15(1):42. doi: 10.1186/s13068-022-02138-6.

ABSTRACT

BACKGROUND: Electric energy is not collected and utilized in biobutanol fermentation. The reason is that the yields of electron shuttles and nanowires are not enough to gather and transfer all electrons to the electrode in liquid fermentation. However, the solid matrix of the adsorption carrier may be conducive to the collection and transfer of electrons because of its good adsorption and conductivity. Therefore, this first-attempt study coupled microbial fuel cell (MFC) with adsorption carrier solid-state fermentation (ACSF). In addition, the effect and mechanism of adsorption carrier solid-state fermentation on power generation were explored.

RESULTS: The power generation performance and fermentation performance were improved by ACSF. The power density by polyurethane and carbon felt carrier solid-state fermentation (PC) was 12 times that by no carrier fermentation (NC). The biobutanol yield of absorbent cotton and carbon felt carrier solid-state fermentation (ACC) was increased by 36.86%. Moreover, the mechanism was explored via metabolic flux analysis, cyclic voltammetry and scanning electron microscopy. The results of metabolic flux analysis showed that more electrons were produced and more carbon flowed to biobutanol production. The cyclic voltammetry results revealed that more riboflavin was produced to enhance extracellular electron transport (EET) by ACSF. The scanning electron microscopy image showed that the adsorption capacity and aggregation degree of bacteria were increased on the electrode and nanowires were observed by ACSF.

CONCLUSIONS: A new fermentation mode was established by coupling MFC with ACSF to improve substrate utilization, which will provide crucial insights into the fermentation industry. In addition, the ACSF is an effective method to enhance power generation performance and fermentation performance.

PMID:35501839 | PMC:PMC9063184 | DOI:10.1186/s13068-022-02138-6

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *