ABSTRACT

Improvements on energy density of loose biomass such as sugarcane feedstock is crucial in the technology of biomass energy conversion and generation. South Africa is one of the producers and refiners of sugarcane. High energy density of sugarcane bagasse biomass through separation and briquetting is imperative in developing adequate streams and quality energy generation from sugarcane upstream milling processes. Unseparated bagasse and separated fractions of fiber and pith possess energy contents of about: 16.14 MJ/kg, 17.73 MJ/kg and 15.74 MJ/kg respectively. Fiber fractions have high energy content than bagasse and pith which demonstrates that pith fraction from bagasse lowers energy density. However, the use of starch and PVA (Polyvinyl Alcohol) as binders during briquetting contributed no significant difference in the overall energy density of the biomass briquettes produced. In the same vein, the addition of 50% charcoal as the hybrid component significantly improves the energy density and the physical properties of briquettes, biomass fractions of bagasse, fiber and pith to: 19.43 MJ/kg, 19.57 MJ/kg and 18.37 MJ/kg respectively. Fiber fraction remains the biomass fraction with highest energy content as compared to other fractions. After briquetting and drying of briquettes to moisture content below 12%, there was a significant improvement on the burning rate, briquetting, binder, hybridization which does improve the biomass briquettes characteristics. Separation of bagasse is crucial under certain conditions since there are no significance differences in the energy density of bagasse fractions. However, the use of PVA and charcoal does pose the necessity of bagasse separation from its fractions for briquetting.

PMID:34497183 | DOI:10.5650/jos.ess21144