Elastomeric tubes with self-regulated distension

iScience. 2022 May 6;25(6):104369. doi: 10.1016/j.isci.2022.104369. eCollection 2022 Jun 17.

ABSTRACT

Compliant elastomer tubing with a fabric “jacket” has been essential in various applications as soft robotic actuators, such as in biomedical exomuscles and massage therapy implements. Here, our study shows that a similar design concept can be an effective strategy in realizing passive regulation in the tube’s distension, as well as in preventing aneurysm-like asymmetric rupture of the tube. A custom hydraulic pressure testing rig was built to perform experiments. The jacketed tubes initially deform rapidly as pressure increases, but a self-regulation behavior suppresses the tube’s continued distension by strain-stiffening of the “jacket”. In addition, highly asymmetric distension, common to elastomeric tubes due to imperfection in fabrication, is prevented dramatically by the “jacket”. A three-dimensional finite element model predicts the distension of all tested tubes quantitatively across the entire experimental pressure ranges and beyond. Incorporating custom-designed kirigami relief patterns in the “jackets” expands the potential of the elastomeric tubes.

PMID:35620432 | PMC:PMC9126797 | DOI:10.1016/j.isci.2022.104369

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *