Electrochemically driven C-N bond formation from CO2 and ammonia at the triple-phase boundary

Chem Sci. 2022 Feb 28;13(14):3957-3964. doi: 10.1039/d1sc06590d. eCollection 2022 Apr 6.

ABSTRACT

Electrosynthetic techniques are gaining prominence across the fields of chemistry, engineering and energy science. However, most works within the direction of synthetic heterogeneous electrocatalysis focus on water electrolysis and CO2 reduction. In this work, we moved to expand the scope of small molecule electrosynthesis by developing a synthetic scheme which couples CO2 and NH3 at a gas-liquid-solid boundary to produce species with C-N bonds. Specifically, by bringing in CO2 from the gas phase and NH3 from the liquid phase together over solid copper catalysts, we have succeeded in forming formamide and acetamide products for the first time from these reactants. In a subsequent complementary step, we have combined electrochemical analysis and a newly developed operando spectroelectrochemical method, capable of probing the aforementioned gas-liquid-solid boundary, to extract an initial level of mechanistic analysis regarding the reaction pathways of these reactions and the current system’s limitations. We believe that the development and understanding of this set of reaction pathways will play significant role in expanding the community’s understanding of on-surface electrosynthetic reactions as well as push this set of inherently sustainable technologies towards widespread applicability.

PMID:35440988 | PMC:PMC8985509 | DOI:10.1039/d1sc06590d

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *