Emulation of the structure of the Saposin protein fold by a lung surfactant peptide construct of surfactant Protein B

PLoS One. 2022 Nov 3;17(11):e0276787. doi: 10.1371/journal.pone.0276787. eCollection 2022.

ABSTRACT

The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.

PMID:36327300 | DOI:10.1371/journal.pone.0276787

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy