Enhanced H2S Gas-Sensing Performance of Ni-Doped ZnO Nanowire Arrays

ACS Omega. 2023 Feb 20;8(8):7595-7601. doi: 10.1021/acsomega.2c07092. eCollection 2023 Feb 28.


Ni-doped ZnO nanowire arrays (Ni-ZnO NRs) with different Ni concentrations are grown on etched fluorine-doped tin oxide electrodes by the hydrothermal method. The Ni-ZnO NRs with a nickel precursor concentration of 0-12 at. % are adjusted to improve the selectivity and response of the devices. The NRs’ morphology and microstructure are investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The sensitive property of the Ni-ZnO NRs is measured. It is found that the Ni-ZnO NRs with an 8 at. % Ni precursor concentration have high selectivity for H2S and a large response of 68.9 at 250 °C compared to other gases including ethanol, acetone, toluene, and nitrogen dioxide. Their response/recovery time is 75/54 s. The sensing mechanism is discussed in terms of doping concentration, optimum operating temperature, gas type, and gas concentration. The enhanced performance is related to the regularity degree of the array and the doped Ni3+ and Ni2+ ions, which increases the active sites for oxygen and target gas adsorption on the surface.

PMID:36873010 | PMC:PMC9979365 | DOI:10.1021/acsomega.2c07092


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy