Enhanced Water Adsorption of MIL-101(Cr) by Metal-Organic Polyhedral Encapsulation for Adsorption Cooling

Nanomaterials (Basel). 2023 Mar 23;13(7):1147. doi: 10.3390/nano13071147.


Metal-organic frameworks (MOFs) are one of the most promising adsorbents in the adsorption cooling system (ACS) for their outstanding water adsorption performance. Notwithstanding that fact, numerous reports pay more attention to the ACS performance improvement through enhancing equilibrium water uptake of MOFs. However, adsorption cooling performance, including specific cooling power (SCP) and coefficient of performance for cooling (COPC) of MOF/water working pairs, always depends on the water adsorption kinetics of MOFs in ACS. In this work, to increase the water adsorption rate, the preparation of MOP/MIL-101(Cr) was achieved by encapsulating hydrophilic metal-organic polyhedral (MOP) into MIL-101(Cr). It was found that the hydrophilicity of MOP/MIL-101(Cr) was enhanced upon hydrophilic MOP3 encapsulation, resulting in a remarkable improvement in water adsorption rates. Furthermore, both SCP and COPC for MOP/MIL-101(Cr)-water working pairs were also improved because of the fast water adsorption of MOP/MIL-101(Cr). In brief, an effective approach to enhance the water adsorption rate and cooling performance of MOF-water working pairs through enhancing the hydrophilicity of MOFs by encapsulating MOP into MOFs was reported in this work, which provides a new strategy for broadening the application of MOF composites in ACS.

PMID:37049241 | PMC:PMC10096998 | DOI:10.3390/nano13071147


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy