Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in Cleistocalyx operculatus and Syzygium jambos under long-term waterlogging conditions

BMC Plant Biol. 2022 Nov 10;22(1):523. doi: 10.1186/s12870-022-03888-z.


BACKGROUND: The mechanisms of abscisic acid (ABA) and auxin (IAA) in inducing adventitious root (AR) formation, biomass accumulation, and plant development under long-term waterlogging (LT-WL) conditions are largely unexplored. This study aimed to determine the roles of exogenous application of ABA and IAA in two woody plants (Cleistocalyx operculatus and Syzygium jambos) under LT-WL conditions. A pot experiment was conducted using a complete randomized design with two factors: (i) LT-WL and (ii) application of exogenous phytohormones (ABA and IAA) for 120 d.

RESULTS: Results revealed that exogenous ABA and IAA promoted LT-WL tolerance in both species. In C. operculatus and S. jambos, plant height, the number of blades, leaf area, and fresh shoot weight were increased by exogenous IAA under LT-WL. However, exogenous ABA affected more the adventitious and primary root in C. operculatus compared to S. jambos. LT-WL decreased drastically the photosynthetic activities in both species, but adding moderate amounts of exogenous ABA or IAA protected the photosynthesis apparatus under LT-WL. Exogenous phytohormones at certain levels decreased the superoxide anion level and malondialdehyde accumulation in plants under LT-WL. Also, the increase of the peroxidases and superoxide dismutase activities by exogenous phytohormones was more marked in C. operculatus compared to S. jambos. Meanwhile, the catalase activity was down-regulated in both species by exogenous phytohormones. Exogenous ABA or IAA positively regulated the jasmonic acid content in ARs under LT-WL. Moderate application of exogenous ABA or IAA in plants under LT-WL decreased the ABA content in the leaves. Lower accumulation of IAA and ABA in the leaves of C. operculatus under LT-WL was positively correlated with a decrease in antioxidant activity.

CONCLUSIONS: Lastly, C. operculatus which has greater morphology indexes was more tolerant to waterlogging than S. jambos. Moreover, the adaptive strategies via exogenous ABA were more built around the below-ground biomass indexes particularly in C. operculatus, while exogenous IAA backed the above-ground biomass in both species. Overall, the exogenous hormones applied (spraying or watering) influenced differentially the plant’s responses to LT-WL. The phytohormonal profile of plants exposed to waterlogging stress varied depending on the species’ tolerance level.

PMID:36357840 | DOI:10.1186/s12870-022-03888-z


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy