Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH2

ACS Cent Sci. 2021 Aug 25;7(8):1427-1433. doi: 10.1021/acscentsci.1c00686. Epub 2021 Aug 10.

ABSTRACT

The electrochemical synthesis of metal-organic frameworks (MOFs) has been widely explored but has involved indirect routes, including anodic dissolution of solid metal electrodes or the use of interfacial redox chemistry to generate base equivalents and drive MOF assembly. These methods are limited in scope, as the former relies on the use of an anode consisting of the metal ion to be incorporated into the MOF, and the latter relies on the compatibility of the metal/ligand solution with the probase that is subsequently oxidized or reduced. We report the facile, direct electrochemical syntheses of four iron-based MOFs via controlled potential oxidation of dissolved metal cations. Oxidation of Fe(II) at +0.75 V (vs Ag/Ag+) in a solution containing 2,6-lutidine and terephthalic acid affords highly crystalline Fe-MIL-101. Controlled potential electrolysis with carboxy-functionalized ITO affords Fe-MIL-101 grown directly on the surface of modified electrodes. The methods we report herein represent the first general routes that employ interfacial electrochemistry to alter the oxidation state of metal ions dissolved in solution to directly trigger MOF formation. The reported method is functional group tolerant and will be broadly applicable to the bulk synthesis or surface growth of a range of MOFs based on metal ions with accessible oxidation states.

PMID:34471686 | PMC:PMC8393204 | DOI:10.1021/acscentsci.1c00686

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *