Flood occurrence analysis in small urban catchments in the context of regional variability

PLoS One. 2022 Nov 3;17(11):e0276312. doi: 10.1371/journal.pone.0276312. eCollection 2022.


An original method for analyzing the influence of the meteorological, as well as physical-geographical conditions on the flooding of stormwater in small urban catchment areas is proposed. A logistical regression model is employed for the identification of the flooding events. The elaborated model enables to simulate the stormwater flooding in a single rainfall event, on the basis of the rainfall depth, duration, imperviousness of the catchment and its spatial distribution within the analyzed area, as well as the density of the stormwater network. The rainfall events are predicted considering the regional convective rainfall model for 32 rain gauges located in Poland, based on 44 years of rainfall data. In the study, empirical models are obtained to calculate the rainfall duration conditioning the flooding of stormwater in a small urban catchment area depending on the characteristics of the examined urban basins. The empirical models enabling to control the urbanization process of catchment areas, accounting for the local rainfall and meteorological characteristics are provided. The paper proposes a methodology for the identification of the areas especially sensitive to stormwater flooding in small urban catchment areas depending to the country scale. By employing the presented methodology, the regions with most sensitive urban catchments are identified. On this basis, a ranking of towns and cities is determined from the most sensitive to flooding in small urban catchment areas to the regions where the risk of flooding is lower. Using the method developed in the paper, maximum impervious catchment area are determined for the selected regions of the country, the exceedance of which determines the occurrence of stormwater flooding.

PMID:36327282 | PMC:PMC9632778 | DOI:10.1371/journal.pone.0276312


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy