High-Capacity Anode Material for Lithium-Ion Batteries with a Core-Shell NiFe2O4/Reduced Graphene Oxide Heterostructure

ACS Omega. 2021 Sep 23;6(39):25269-25276. doi: 10.1021/acsomega.1c03050. eCollection 2021 Oct 5.

ABSTRACT

A novel composite consisting of transition-metal oxide and reduced graphene oxide (rGO) has been designed as a highly promising anode material for lithium-ion batteries (LIBs). The anode material for LIBs exhibits high-rate capability, outstanding stability, and nontoxicity. The structural characterization techniques, such as X-ray diffraction, Raman spectra, and transmission electron microscopy, indicate that the material adopts a unique core-shell structure with NiFe2O4 nanoparticles situated in the center and an rGO layer coated on the surface of NiFe2O4 particles (denoted as NiFe2O4/rGO). The NiFe2O4/rGO material with a core-shell structure exhibits an excellent electrochemical performance, which shows a capacity of 1183 mA h g-1 in the first cycle and maintains an average capacity of ∼1150 mA h g-1 after 900 cycles at a current density of 500 mA g-1. This work provides a broad field of vision for the application of transition-metal-oxide materials in electrodes of lithium-ion batteries, which is of great significance for further development of lithium-ion batteries with excellent performance.

PMID:34632186 | PMC:PMC8495711 | DOI:10.1021/acsomega.1c03050

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *