Highly active postspinel-structured catalysts for oxygen evolution reaction

RSC Adv. 2022 Feb 10;12(9):5094-5104. doi: 10.1039/d2ra00448h. eCollection 2022 Feb 10.


The rational design principle of highly active catalysts for the oxygen evolution reaction (OER) is desired because of its versatility for energy-conversion applications. Postspinel-structured oxides, CaB 2O4 (B = Cr3+, Mn3+, and Fe3+), have exhibited higher OER activities than nominally isoelectronic conventional counterparts of perovskite oxides LaBO3 and spinel oxides ZnB 2O4. Electrochemical impedance spectroscopy reveals that the higher OER activities for CaB 2O4 series are attributed to the lower charge-transfer resistances. A density-functional-theory calculation proposes a novel mechanism associated with lattice oxygen pairing with adsorbed oxygen, demonstrating the lowest theoretical OER overpotential than other mechanisms examined in this study. This finding proposes a structure-driven design of electrocatalysts associated with a novel OER mechanism.

PMID:35425573 | PMC:PMC8981248 | DOI:10.1039/d2ra00448h


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *