Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT

Rofo. 2022 Sep 6. doi: 10.1055/a-1901-7814. Online ahead of print.

ABSTRACT

BACKGROUND: Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).

PURPOSE: To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.

MATERIALS AND METHODS: We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.

RESULTS: The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73-1.06; p = 0.187). Furthermore, the consultants’ odds of correct pattern recognition was 78 % higher than the residents’ odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62-5.06; p = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ± 0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ± 0.17/κ = 0.38 ± 0.17.

CONCLUSION: There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification.

KEY POINTS: · There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.. · There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.. · These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis..

CITATION FORMAT: · Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1901-7814.

PMID:36067777 | DOI:10.1055/a-1901-7814

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy