Is Cu3-x P a Semiconductor, a Metal, or a Semimetal?

Chem Mater. 2023 Jan 25;35(3):1259-1272. doi: 10.1021/acs.chemmater.2c03283. eCollection 2023 Feb 14.


Despite the recent surge in interest in Cu3-x P for catalysis, batteries, and plasmonics, the electronic nature of Cu3-x P remains unclear. Some studies have shown evidence of semiconducting behavior, whereas others have argued that Cu3-x P is a metallic compound. Here, we attempt to resolve this dilemma on the basis of combinatorial thin-film experiments, electronic structure calculations, and semiclassical Boltzmann transport theory. We find strong evidence that stoichiometric, defect-free Cu3P is an intrinsic semimetal, i.e., a material with a small overlap between the valence and the conduction band. On the other hand, experimentally realizable Cu3-x P films are always p-type semimetals natively doped by copper vacancies regardless of x. It is not implausible that Cu3-x P samples with very small characteristic sizes (such as small nanoparticles) are semiconductors due to quantum confinement effects that result in the opening of a band gap. We observe high hole mobilities (276 cm2/(V s)) in Cu3-x P films at low temperatures, pointing to low ionized impurity scattering rates in spite of a high doping density. We report an optical effect equivalent to the Burstein-Moss shift, and we assign an infrared absorption peak to bulk interband transitions rather than to a surface plasmon resonance. From a materials processing perspective, this study demonstrates the suitability of reactive sputter deposition for detailed high-throughput studies of emerging metal phosphides.

PMID:36818593 | PMC:PMC9933438 | DOI:10.1021/acs.chemmater.2c03283


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy