Lactobacillus cell envelope-coated nanoparticles for antibiotic delivery against cariogenic biofilm and dental caries

J Nanobiotechnology. 2022 Aug 2;20(1):356. doi: 10.1186/s12951-022-01563-x.


BACKGROUND: Due to their prevalence, dental caries ranks first among all diseases endangering human health. Therefore, the prevention of caries is of great significance, as caries have become a serious public health problem worldwide. Currently, using nanoscale drug delivery systems to prevent caries has received increased attention. However, the preventive efficacy of these systems is substantially limited due to the unique physiological structure of cariogenic biofilms. Thus, novel strategies aimed at combating cariogenic biofilms to improve preventive efficiency against caries are meaningful and very necessary. Herein, inspired by cell membrane coating technology and Lactobacillus strains, we coated triclosan (TCS)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TCS@PLGA-NPs) with an envelope of Lactobacillus (LA/TCS@PLGA-NPs) and investigated their potential as a nanoparticle delivery system against cariogenic biofilms and dental caries.

RESULTS: LA/TCS@PLGA-NPs were successfully prepared with favorable properties, including a coated envelope, controllable size, negative charge, sustained drug-release kinetics and so on. The LA/TCS@PLGA-NPs inherited native properties from the source cell surface, thus the LA/TCS@PLGA-NPs adhered to S. mutans, integrated into the S. mutans biofilm, and interfered with the biofilm formation of S. mutans. The nanoparticles significantly inhibited the activity, biomass and virulence gene expression of S. mutans biofilms in vitro. Additionally, LA/TCS@PLGA-NPs exhibited a long-lasting inhibitory effect on the progression of caries in vivo. The safety performance of the nanoparticles is also favorable.

CONCLUSIONS: Our findings reveal that the antibiofilm effect of LA/TCS@PLGA-NPs relies not only on the inheritance of native properties from the Lactobacillus cell surface but also on the inhibitory effect on the activity, biomass and virulence of S. mutans biofilms. Thus, these nanoparticles could be considered feasible candidates for a new class of effective drug delivery systems for the prevention of caries. Furthermore, this work provides new insights into cell membrane coating technology and presents a novel strategy to combat bacterial biofilms and associated infections.

PMID:35918726 | PMC:PMC9344742 | DOI:10.1186/s12951-022-01563-x


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy