Low-cost biosorption of Fe(II) and Fe(III) from single and binary solutions using Ulva lactuca-derived cellulose nanocrystals-graphene oxide composite film

Sci Rep. 2023 Apr 19;13(1):6422. doi: 10.1038/s41598-023-33386-7.


The marine algal biomass of Ulva lactuca was utilized for the extraction of cellulose and the development of cellulose nanocrystals/graphene oxide film. Cellulose nanocrystals with 50-150 nm were produced by H2SO4 hydrolysis of the algal cellulose. The adsorption efficiency of the nanocomposite film for Fe(II) and Fe(III) ions was successfully evaluated using Box-Behnken design. The maximum removal for Fe(II) (64.15%) could be attained at pH 5.13, adsorbent dosage 7.93 g L-1 and Fe(II) concentration 15.39 mg L-1, while the biosorption of Fe(III) was 69.92% at pH 5.0, adsorbent dosage 2 g L-1, and Fe(III) concentration 15.0 mg L-1. However, in the binary system, the removal efficiency of Fe(II) was enhanced to 95.48% at Fe(II):Fe(III) ratio of 1:1, while the Fe(III) removal was increased to 79.17% at ratio 1:2. The pseudo-second-order kinetics exhibited better fitting to the experimental results of Fe(II) and Fe(III) adsorption in both single and binary systems. The intra-particle diffusion was prominent during the biosorption, but the effect of the external mass transfer was significant. The Langmuir, Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich isotherms showed satisfactory fitting to the experimental data, but they differ in priority based on iron state and pH. The adsorption of Fe(II) in the presence of Fe(III) in a mixture was best represented by the extended Langmuir model, while the extended Langmuir-Freundlich model best fitted the adsorption of Fe(III). The FT-IR analysis indicated that physisorption through electrostatic interaction/complexation is the predominant mechanism for the adsorption of iron using the nanocomposite film.

PMID:37076571 | PMC:PMC10115868 | DOI:10.1038/s41598-023-33386-7


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy