Machine learning for a sustainable energy future

Nat Rev Mater. 2022 Oct 18:1-14. doi: 10.1038/s41578-022-00490-5. Online ahead of print.


Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances – at the materials, devices and systems levels – for the efficient harvesting, storage, conversion and management of renewable energy. Energy researchers have begun to incorporate machine learning (ML) techniques to accelerate these advances. In this Perspective, we highlight recent advances in ML-driven energy research, outline current and future challenges, and describe what is required to make the best use of ML techniques. We introduce a set of key performance indicators with which to compare the benefits of different ML-accelerated workflows for energy research. We discuss and evaluate the latest advances in applying ML to the development of energy harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis) and management (smart grids). Finally, we offer an overview of potential research areas in the energy field that stand to benefit further from the application of ML.

PMID:36277083 | PMC:PMC9579620 | DOI:10.1038/s41578-022-00490-5


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy