Multi-directional neutron dark-field imaging with single absorption grating

Sci Rep. 2023 Sep 15;13(1):15274. doi: 10.1038/s41598-023-42310-y.


Neutron dark-field imaging is a powerful technique for investigating the microstructural properties of materials through high-resolution full-field mapping of small-angle scattering. However, conventional neutron dark-field imaging utilizing Talbot-Lau interferometers is limited to probing only one scattering direction at a time. Here, we introduce a novel multi-directional neutron dark-field imaging approach that utilizes a single absorption grating with a two-dimensional pattern to simultaneously probe multiple scattering directions. The method is demonstrated to successfully resolve fiber orientations in a carbon compound material as well as the complex morphology of the transformed martensitic phase in additively manufactured stainless steel dogbone samples after mechanical deformation. The latter results reveal a preferential alignment of transformed domains parallel to the load direction, which is verified by EBSD. The measured real-space correlation functions are in good agreement with those extracted from the EBSD map. Our results demonstrate that multi-directional neutron dark-field imaging is overcoming significant limitations of conventional neutron dark-field imaging in assessing complex heterogeneous anisotropic microstructures and providing quantitative structural information on multiple length scales.

PMID:37714939 | PMC:PMC10504250 | DOI:10.1038/s41598-023-42310-y


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *