Photocatalytic dehydrogenative C-C coupling of acetonitrile to succinonitrile

Nat Commun. 2022 Jul 28;13(1):4379. doi: 10.1038/s41467-022-32137-y.


The coupling of acetonitrile into succinonitrile, an important terminal dinitrile for value-added nylon production, via a dehydrogenative route is highly attractive, as it combines the valuable chemical synthesis with the production of green hydrogen energy. Here, we demonstrate that it is possible to achieve a highly selective light driven dehydrogenative coupling of acetonitrile molecules to synthesize succinonitrile using anatase TiO2 based photocatalysts in aqueous medium under mild conditions. Under optimized conditions, the formation rate of succinonitrile reaches 6.55 mmol/(gcat*h), with over 97.5% selectivity to target product. Mechanism studies reveal that water acts as cocatalyst in the reaction. The excited hole of anatase semiconductor oxidizes water forming hydroxyl radical, which subsequently assists the cleavage of sp3 C-H bond of acetonitrile to generate ·CH2CN radical for further C-C coupling. The synergy between TiO2 and Pt cocatalyst is important to enhance the succinonitrile selectivity and prevent undesirable over-oxidation and hydrolysis. This work offers an alternative route to prepare succinonitrile based on renewable energy under mild conditions and avoid the use of toxic reagents and stoichiometric oxidative radical initiators.

PMID:35902595 | PMC:PMC9334571 | DOI:10.1038/s41467-022-32137-y


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy