Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model in Smart Grid

Comput Intell Neurosci. 2022 Oct 6;2022:7495548. doi: 10.1155/2022/7495548. eCollection 2022.

ABSTRACT

The exponential growth of electrical demand and the integration of renewable energy sources (RES) brought new challenges in the traditional grid about energy quality. The transition from traditional grid to smart grid is the best solution which provides necessary tools and information and communication technologies (ICT) for service enhancement. In this study, variation of energy demand and some factors of atmospheric change are considered to forecast production of photovoltaic energy that can be adapted for evolution of consumption in smart grid. The contribution of this study concerns a novel optimized hybrid intelligent model made of the artificial neural network (ANN), support vector machine (SVM), and particle swarm optimization (PSO) implemented for long term photovoltaic (PV) power generation forecasting based on real data of consumption and climate factors of the city of Douala in Cameroon. The accuracy of this model is evaluated using the coefficients such as the mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and regression coefficient (R). Using this novel hybrid technique, the MSE, RMSE, MAPE, MAE, and R are 14.9721, 3.8693, 3.32%, 0.867, and 0.9984, respectively. These obtained results show that the novel hybrid model outperforms other models in the literature and can be helpful for future renewable energy requirements. However, the convergence speed of the proposed approach can be affected due to the random variability of available data.

PMID:36248947 | PMC:PMC9560835 | DOI:10.1155/2022/7495548

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy