Practical and thermodynamic constraints on electromicrobially accelerated CO2 mineralization

iScience. 2022 Jul 16;25(8):104769. doi: 10.1016/j.isci.2022.104769. eCollection 2022 Aug 19.

ABSTRACT

By the end of the century, tens of gigatonnes of CO2 will need to be removed from the atmosphere every year to maintain global temperatures. Natural weathering of ultramafic rocks and subsequent mineralization reactions can convert CO2 into ultra-stable carbonates. Although this will draw down all excess CO2, it will take thousands of years. CO2 mineralization could be accelerated by weathering ultramafic rocks with biodegradable lixiviants. We show that if these lixiviants come from cellulosic biomass, this demand could monopolize the world’s biomass supply. We demonstrate that electromicrobial production technologies (EMP) that combine renewable electricity and microbial metabolism could produce lixiviants for as little as $200 to $400 per tonne at solar electricity prices achievable within the decade. We demonstrate that EMP could make enough lixiviants to sequester a tonne of CO2 for less than $100. This work highlights the potential of this approach and the need for extensive R&D.

PMID:35992063 | PMC:PMC9385556 | DOI:10.1016/j.isci.2022.104769

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy