Production of tung oil epoxy resin using low frequency high power ultrasound

Ultrason Sonochem. 2021 Sep 25;79:105765. doi: 10.1016/j.ultsonch.2021.105765. Online ahead of print.

ABSTRACT

Epoxy resins made from vegetable oils are an alternative to synthesize epoxy resins from renewable sources. Tung oil is rich in α -eleostearic fatty acid, which contains three double bonds producing epoxy resins with up to three epoxy groups per fatty acid. This work studied the production of tung oil epoxy resin using hydrogen peroxide as an oxidizing agent and acetic and formic acid as percarboxylic acid precursors, applying low frequency high power ultrasound. This study evaluated the effects of ultrasound power density, hydrogen peroxide concentration, acetic acid concentration, and formic acid concentration on the yield into epoxy resin, selectivity, and by-products formation. Application of ultrasound was carried out using a 19 kHz probe ultrasound (horn ultrasound) with a 1.3 cm diameter titanium probe, 500 W nominal power, 2940 W L-1 maximum effective power density applied to the reaction mixture. Ultrasound technology yielded up to 85% of epoxy resin in 3 h of reaction. The use of formic acid resulted in a slightly lower oil conversion than acetic acid but with a much higher selectivity towards epoxidized tung oil. However, using acetic acid resulted in the production of high-value by-products, such as 2-heptenal and 2,4-nonadienal. The ultrasound-assisted epoxidation showed to be particularly efficient when applied to oils containing conjugated double-bonds.

PMID:34600302 | DOI:10.1016/j.ultsonch.2021.105765

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *