Rapid cold plasma synthesis of cobalt metal-organic framework/reduced graphene oxide nanocomposites for use as supercapacitor electrodes

Sci Rep. 2023 Sep 13;13(1):15156. doi: 10.1038/s41598-023-41816-9.


Metal-organic frameworks (MOFs) are recognized as a desirable class of porous materials for energy storage applications, despite their limited conductivity. In the present study, Co-MOF-71 was fabricated as a high-performance supercapacitor electrode at ambient temperature using a fast and straightforward, one-pot cold plasma method. A supercapacitor electrode based on Co-MOF@rGO was also synthesized by adding reduced graphene oxide (rGO) during processing to increase the capacitance retention and stability after 4000 cycles from 80 to 95.4%. The Co-MOF-71 electrode provided a specific capacitance (Cs) of 651.7 Fg-1 at 1 Ag-1, whereas the Co-MOF@rGO electrode produced a Cs value of 967.68 Fg-1 at 1 Ag-1. In addition, we fabricated an asymmetric device (Co-MOF@rGO||AC) using Co-MOF-rGO as a high-rate positive electrode and activated carbon (AC) as a negative electrode. This hybrid device has a remarkable specific energy and power density. The combination of MOFs with reduced graphene oxide (rGO) in a cold plasma environment resulted in the formation of a three-dimensional nanostructure composed of nanosheets. This nanostructure exhibited an increased number of electroactive sites, providing benefits for energy storage applications.

PMID:37704648 | PMC:PMC10499990 | DOI:10.1038/s41598-023-41816-9


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *