Reactive Extraction for Fatty Acid Methyl Ester Production from Castor Seeds Using a Heterogeneous Base Catalyst: Process Parameter Optimization and Characterization

ACS Omega. 2022 Nov 4;7(45):41559-41574. doi: 10.1021/acsomega.2c05423. eCollection 2022 Nov 15.

ABSTRACT

Fatty acid methyl ester (FAME) from oil seeds is conventionally produced via a two/three-process-step method: extraction of oil and subsequent esterification/transesterification to fatty FAME (biodiesel). However, in the present study, we investigated the production of castor kernel oil (CKO) FAME by reactive extraction for extraction and transesterification in a single process using a heterogeneous catalyst. The content of oil that can be extracted was checked by investigating several nonreactive extraction parameters such as solvent type (polar, nonpolar, and mixture), the solvent to kernel ratio, and extraction time. Maximum oil was extracted using methanol as a solvent with a methanol-to-seed ratio of 6.25:1 for 6 h extraction time. The viscosity of CKO obtained by nonreactive extraction was reduced from 288.83 to 19.04 mm2/s by reactive extraction using a 4.09 wt % catalyst concentration (BaO) and a 330.9:1 methanol-to-oil molar ratio for 6 h reaction time at 64 °C. Reactive extraction for transesterification of CKO was performed using BaO, CaO, and ZnO heterogeneous catalysts. BaO results in the increased yield of CKO FAME compared to other catalysts. Central composite design (CCD) using the response surface methodology (RSM) was implemented to design the experimental matrix, process parameter optimization, maximize the yield of CKO FAME, and investigate interaction effects of parameters such as reactive extraction temperature (55-65 °C), catalyst concentration (3-5 wt %), and methanol-to-oil molar ratio (175:1-350:1) on the yield of CKO FAME. A second-order model equation with a p-value < 0.05 and an R 2 value near 1.0 was obtained to predict the yield using the input parameters. The maximum yield CKO FAME of 96.13 wt % with 94.4% purity of produced CKO FAME was obtained at a catalyst concentration of 4.09 wt % and a methanol-to-oil molar ratio of 330.9:1 for 6 h with a reaction temperature of 64 °C. Therefore, a comparable conversion of castor seed oil triglyceride (96.13 wt %) was obtained in a single step directly from castor seeds. Furthermore, the rheological behavior investigation of castor kernel oil and castor methyl ester revealed that the dynamic viscosity of both samples was found to be dependent on triglyceride content and temperature.

PMID:36406585 | PMC:PMC9670912 | DOI:10.1021/acsomega.2c05423

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy