Real-time noise cancellation with deep learning

PLoS One. 2022 Nov 21;17(11):e0277974. doi: 10.1371/journal.pone.0277974. eCollection 2022.

ABSTRACT

Biological measurements are often contaminated with large amounts of non-stationary noise which require effective noise reduction techniques. We present a new real-time deep learning algorithm which produces adaptively a signal opposing the noise so that destructive interference occurs. As a proof of concept, we demonstrate the algorithm’s performance by reducing electromyogram noise in electroencephalograms with the usage of a custom, flexible, 3D-printed, compound electrode. With this setup, an average of 4dB and a maximum of 10dB improvement of the signal-to-noise ratio of the EEG was achieved by removing wide band muscle noise. This concept has the potential to not only adaptively improve the signal-to-noise ratio of EEG but can be applied to a wide range of biological, industrial and consumer applications such as industrial sensing or noise cancelling headphones.

PMID:36409690 | DOI:10.1371/journal.pone.0277974

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy