SCOBY-based bacterial cellulose as free standing electrodes for safer, greener and cleaner energy storage technology

Heliyon. 2022 Oct 13;8(10):e11048. doi: 10.1016/j.heliyon.2022.e11048. eCollection 2022 Oct.

ABSTRACT

Bacterial Cellulose (BC) derived from local market or symbiotic culture of bacteria and yeast (SCOBY) was employed as the polymer matrix for hydroxyl multi-walled carbon nanotube (MWCNT-OH)-based electrochemical double-layer capacitor (EDLC). Chitosan (CS)-sodium iodide (NaI)-glycerol (Gly) electrolyte systems were used as the polymer electrolyte. CS-NaI-Gly electrolyte possesses conductivity, potential stability and ionic transference number of (1.20 ± 0.26) × 10-3 S cm-2, 2.5 V and 0.99, respectively. For the electrodes, MWCNT-OH was observed to be well dispersed in the matrix of BC which was obtained via FESEM analysis. The inclusion of MWCNT-OH reduced the crystallinity of the BC polymeric structure. From EIS measurement, it was verified that the presence of MWCNT-OH decreased the electron transfer resistance of BC-based electrodes. Cyclic voltammetry (CV) showed that the shape of the CV plots changed to a rectangular-like shape plot as more MWCNT were added, thus verifying the capacitive behavior. Various amount of MWCNT-OH was used in the fabrication of the EDLC where it was discovered that more MWCNT-OH leads to a better EDLC performance. The EDLC was tested for 5000 complete charge-discharge cycles. The optimum performance of this low voltage EDLC was obtained with 0.1 g MWCNT where the average specific capacitance was 8.80 F g-1. The maximum power and energy density of the fabricated EDLC were 300 W kg-1 and 1.6 W h kg-1, respectively.

PMID:36281392 | PMC:PMC9587280 | DOI:10.1016/j.heliyon.2022.e11048

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy