Self-Plasticized PVC Prepared by Introducing Fatty Acid to the PVC with Triglycidyl Isocyanurate as an Intermediate Bridge

ACS Omega. 2022 Sep 26;7(40):35694-35704. doi: 10.1021/acsomega.2c03655. eCollection 2022 Oct 11.

ABSTRACT

The phthalate-free self-plasticization of poly(vinyl chloride) (PVC) conforms to the concept of green chemistry. In this work, phthalate-free, biocontaining, self-plasticized PVC with nonmigration (4-an-TG-X-PVC; X = R, P, or O) was prepared by covalent attachment of ricinoleic acid, palmitic acid, and oleic acid, respectively, to the PVC matrix with 4-aminothiophenol and triglycidyl isocyanurate (TGIC) as intermediate bridges. 4-Aminothiophenol and TGIC acted as the nucleophilic reagent and the thermally stable substance, respectively. The 4-an-TG-X-PVC was observed by diverse characterization methods. Specifically, Fourier transform infrared spectra, 1H nuclear magnetic resonance, gel permeation chromatography, and migration stability tests proved the successful synthesis of 4-an-TG-X-PVC. Compared to the neat PVC, the mechanical property of 4-an-TG-X-PVC is better. The glass transition temperature (T g) of PVC is 81.24 °C, while that of 4-an-TG-X-PVC decreased to 41.88, 31.49, and 46.91 °C. The 4-an-TG-X-PVC showed higher elongation at break and lower tensile strength than neat PVC. Simultaneously, the thermal property of 4-an-TG-X-PVC got a boost. Thermogravimetry-infrared and thermogravimetry-mass spectrometry showed that 4-an-TG-X-PVC released less HCl than neat PVC in a thermal environment. Discoloration experiments demonstrated that 4-an-TG-P-PVC had better heat stabilization and better color than 4-an-TG-O-PVC and 4-an-TG-R-PVC. This work provides a viable solution to the dependence on phthalates, reduced human health and ecological risks, and endowed PVC with improved thermal stability and nonmigration performance.

PMID:36249389 | PMC:PMC9558238 | DOI:10.1021/acsomega.2c03655

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy