Structural analysis and simulation of solid microneedle array for vaccine delivery applications

Mater Today Proc. 2022 Jul 13. doi: 10.1016/j.matpr.2022.06.483. Online ahead of print.

ABSTRACT

This paper promotes a basic, quick, stature adaptable, and direct approach to selecting exceptionally suitable materials in polyethylene glycol diacrylate (PEGDA) and silicon for microneedle fabrication. Researchers and scientists are facing challenges in readily selecting biocompatible materials for microneedle fabrication. Solid porous silicon and PEGDA microneedles are particularly biocompatible and desirable for vaccine delivery by the transdermal vaccine delivery method if microneedle arrays are fabricated successfully using lithography techniques as they belong to enhanced patient concurrence and well-being. Moreover, silicon and PEGDA microneedles are the ultimate for conveying coronavirus vaccines. In this work, we applied the ANSYS workbench tool to investigate the properties of triangular pyramidal-shaped solid silicon and PEGDA microneedle array to perform structural analysis on microneedle for estimating the capability of an array of needles to enter and convey vaccines along with the skin. These outcomes demonstrated that microneedles of porous silicon are better than polymers such as PEGDA as far as mechanical strength and capacity to convey drugs. Buckling was anticipated as the fundamental method to estimate the failure of microneedles and finally, by analysis, it was clear that buckling does not impact the potential of the silicon microneedle needle array. Silicon and PEGDA microneedles are penetrated against human skin surfaces in explicit dynamics by utilizing the ANSYS tool to select the best material. Along these lines, the current strategy can work with silicon and PEGDA microneedles for useful applications. The von Mises stresses generated by applying loads on silicon and PEGDA arrays were greater than the skin resistance of 3.18 MPa and suitable for skin insertion. Silicon microneedles are sustained due to buckling but PEGDA needles fail if the loading is more than 0.1 N. Vaccination can be provided to humans if needle arrays are fabricated based on this approach and design analysis and considering parameters.

PMID:35855948 | PMC:PMC9277466 | DOI:10.1016/j.matpr.2022.06.483

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy