The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato

Plant Physiol. 2022 Nov 15:kiac516. doi: 10.1093/plphys/kiac516. Online ahead of print.

ABSTRACT

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37-70.94% increase in leaf biomass, a 12.08-21.85% increase in IAA levels, and a 31.33-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the auxin signaling and flavonoid biosynthesis pathways. ChIP-qPCR and EMSA indicated that IbBBX29 targets key genes of auxin signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as MADS-box protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.

PMID:36377782 | DOI:10.1093/plphys/kiac516

Share:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy