Tunable uniaxial, area, and volume negative thermal expansion in quartz-like and diamond-like metal-organic frameworks

RSC Adv. 2022 Aug 8;12(34):21770-21779. doi: 10.1039/d2ra03292a. eCollection 2022 Aug 4.


This paper proposes that it will be an effective way to discover and explore organic negative thermal expansion (NTE) materials based on the specific topologies in inorganic NTE materials. Various NTE behaviors from the uniaxial, area, and volume-NTE can be achieved by adjusting the topology, for instance, quartz-like and diamond-like. Zn(ISN)2 and InH(BDC) metal-organic frameworks (MOFs) with quartz-like topology have been studied by first principles calculations. The calculated area-NTE of Zn(ISN)2 and uniaxial-NTE of InH(BDC) within quasi-harmonic approximation (QHA) agree well with the experimental data. Through the calculation of Grüneisen parameters, it is shown that low-frequency optical phonons appear dominant resulting in their NTE, but the coupling to high-frequency phonons is of greater ultimate importance. The lattice vibrational modes of great contribution to area-NTE of Zn(ISN)2 and uniaxial-NTE of InH(BDC) are analyzed in detail. Also, four MOFs with diamond-like topology are predicted to exhibit volume-NTE behavior. Moreover, it is found that there is a bulk modulus anomaly in some studied MOFs with the quartz-like and diamond-like framework, where the temperature dependence of bulk modulus does not follow the inverse dependence on that of volume. These specific topologies provide key geometric frameworks for various NTE behaviors of MOFs, and meanwhile, the local structure and bond environment in MOFs can lead to abnormal interatomic force, i.e., bulk modulus anomaly. This abnormal elastic property also deserves more attention.

PMID:36043075 | PMC:PMC9358679 | DOI:10.1039/d2ra03292a


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Generated by Feedzy