Water-Stable Carborane-Based Eu3+/Tb3+ Metal-Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding

Chem Mater. 2022 May 24;34(10):4795-4808. doi: 10.1021/acs.chemmater.2c00323. Epub 2022 Apr 29.


Luminescent lanthanide metal-organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of m CB-Eu y Tb 1-y (y = 0-1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb3+ to Eu3+, and time-dependent emission of the series of mixed-metal m CB-Eu y Tb 1-y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu0.1Tb0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 μs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.

PMID:35637791 | PMC:PMC9136944 | DOI:10.1021/acs.chemmater.2c00323


Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *